Miniaturization and future prospects of Si devices

G-COE PICE International Symposium and IEEE EDS Minicolloquium on Advanced Hybrid Nano Devices: Prospects by World's Leading Scientists

October 4, 2011

Hiroshi Iwai, Tokyo Institute of Technology First Computer Eniac: made of huge number of vacuum tubes 1946 Big size, huge power, short life time filament

 \rightarrow dreamed of replacing vacuum tube with solid-state device

Today's pocket PC made of semiconductor has much higher performance with extremely low power consumption

Mechanism of MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

0 bias for gate

and Detential (Negative direction)

Positive bias for gate

1960: First MOSFET by D. Kahng and M. Atalla **Top View**

Si/SiO₂ Interface is exceptionally good

1970,71: 1st generation of LSIs

1kbit DRAM Intel 1103 4bit MPU Intel 4004

Most recent SD Card

Most Recent SD Card

128GB (Bite) = 128G X 8bit = 1024Gbit = 1.024T(Tera)bit

$1T = 10^{12} = 1$ Trillion

World Population : 6 Billion Brain Cell : 10~100 Billion Stars in Galaxy : 100 Billion

Most Recent SD Card

2.4cm X 3.2cm X 0.21cm

Volume: 1. 6cm³ Weight: 2g

Voltage: 2.7 - 3.6V

Old Vacuum Tube: 5cm X 5cm X 10cm, 100g,100W

1Tbit = 10k X10k X 10k bit

Volume = 0.5km X 0.5km X 1km = 0.25 km³ = 0.25X10¹²cm³

Weight = $0.1 \text{ kgX} 10^{12} = 0.1 \text{ X} 10^9 \text{ton} = 100 \text{ M} \text{ ton}$

Power = $0.1 \text{kWX} 10^{12} = 50 \text{ TW}$

Supply Capability of Tokyo Electric Power Company: 55 BW ₉

So, progress of IC technology is most important for the power saving!

Downsizing of the components has been the driving force for circuit evolution

1900	1950	1960	1970	2000
Vacuum Tube	Transistor	IC	LSI	ULSI
10 cm	cm	mm	10 µm	100 nm
10 ⁻¹ m	10 ⁻² m	10 ⁻³ m	10 ⁻⁵ m	10 ⁻⁷ m

In 100 years, the size reduced by one million times. There have been many devices from stone age. We have never experienced such a tremendous reduction of devices in human history. Downsizing

- 1. Reduce Capacitance
- Increase clock frequency
 - Increase circuit operation speed
- 2. Increase number of Transistors
- → Parallel processing
 - Increase circuit operation speed

Downsizing contribute to the performance increase in double ways

Thus, downsizing of Si devices is the most important and critical issue:

Many people wanted to say about the limit. Past predictions were not correct!!

Period	Expected limit(size)	Cause
Late 1970's	1μm:	SCE
Early 1980's	0.5µm:	S/D resistance
Early 1980's	0.25µm:	Direct-tunneling of gate SiO ₂
Late 1980's	0.1µm:	'0.1µm brick wall'(various)
2000	50nm:	'Red brick wall' (various)
2000	10nm:	Fundamental?

Transistor Scaling Continues

Qi Xinag, ECS 2004, AMD

0 bias for gate

Surface Potential (Negative direction)

@Vg=0V, Transistor cannot be switched off **Prediction now!**

Limitation for MOSFET operation

Prediction now!

Limitation for MOSFET operation

Question:

How far we can go with downscaling?

How far can we go for production?

Past0.7 times per 3 yearsIn 40 years: 18 generations, NowSize 1/300, Area 1/100,000

1970年

 $10\mu m \rightarrow 8\mu m \rightarrow 6\mu m \rightarrow 4\mu m \rightarrow 3\mu m \rightarrow 2\mu m \rightarrow 1.2\mu m \rightarrow 0.8\mu m \rightarrow 0.5\mu m \rightarrow 0.5$

 $0.35\mu m \rightarrow 0.25\mu m \rightarrow 180nm \rightarrow 130nm \rightarrow 90nm \rightarrow 65nm \rightarrow 45nm \rightarrow 32nm$

Future

→ (28nm) → 22nm → 16nm → 11.5 nm → 8nm → 5.5nm? → 4nm? → 2.9 nm?

-At least 4,5 generations to 8nm

Hopefully 8 generations to 3nm

Subtheshold leakage current of MOSFET

Vth cannot be decreased anymore

Log scale Id plot

Constant and does not become small with down-scaling

22

Subtheshold leakage current of MOSFET

The limit is deferent depending on application

Source: 2007 ITRS Winter Public Conf.

Scaling Method: by R. Dennard in 1974

Down scaling is the most effective way of Power saving.

The down scaling of MOSFETs is still possible for another 10 years!

3 important technological items for DS.

New materials

- 1. Thinning of high-k beyond 0.5 nm
- 2. Metal S/D
- New structures
 - 3. Wire channel

1. High-k beyond 0.5 nm

- 1.2nm physical SiO2 in production (90nm logic node)
- 0.8nm physical SiO2 in research transistors

By Robert Chau, IWGI 2003

There is a solution! **K: Dielectric Constant** To use high-k dielectrics

However, very difficult and big challenge!

Remember MOSFET had not been realized without Si/SiO₂!

Choice of High-k elements for oxide

Conduction band offset vs. Dielectric Constant

Leakage Current by Tunneling

XPS measurement by Prof. T. Hattori, INFOS 2003

High-k gate insulator MOSFETs for Intel: EOT=1nm HfO₂ based high-k

Now

Year

Cluster tool for high-k thin film deposition

SiO_x-IL growth at HfO₂/Si Interface

W

 $HfO_{2}k=16$

_<mark>SiO_x-IL</mark> k=4

Phase separator

 $\begin{array}{c} HfO_2+Si+O_2\rightarrow HfO_2+Si+20^*\rightarrow HfO_2+SiO_2\\ \hbox{ H. Shimizu, JJAP, 44, pp. 6131}\\ \hline Oxygen supplied from W gate electrode\\ \hbox{ D.J.Lichtenwalner, Tans. ECS 11, 319}\\ SiO_x-IL is formed after annealing\\ Oxygen control is required for optimizing the reaction\\ \end{array}$

La-Silicate Reaction at La₂O₃/Si Direct contact high-k/Si is possible

La₂O₃ can achieve direct contact of high-k/Si

36

La₂O₃ at 300°C process make sub-0.4 nm EOT MOSFET

0.48 \rightarrow 0.37nm Increase of Id at 30%

However, high-temperature anneal is necessary for the good interfacial property

A fairly nice La-silicate/Si interface can be obtained with high temperature annealing. (800°C)

A small D_{it} of 1.6x10¹¹ cm⁻²/eV, results in better electron mobility.

Physical mechanisms for small Dit

① silicate-reaction-formed fresh interface

② stress relaxation at interface by glass type structure of La silicate.

J. S. Jur, et al., Appl. Phys. Lett., Vol. 87, No. 10, (2007) p. 102908

FGA800°C is necessary to reduce the interfacial stress

S. D. Kosowsky, et al., Appl. Phys₄₁Lett., Vol. 70, No. 23, (1997) pp. 3119

EOT growth suppression by Si coverage

Increasing EOT caused by high temperature annealing can be dramatically suppressed by Silicon masked stacks

No interfacial layer can be confirmed with Si/TiN/W

nMOSFET with EOT of 0.62nm

EOT of 0.62nm and 155 cm²/Vsec at 1MV/cm can be achieved

Benchmark of La-silicate dielectrics

T. Ando et al., IEDM2009

Gate leakage is two orders of magnitude lower than that of ITRS

Electron mobility is comparable to record mobility with Hf-based oxides

Metal (Silicide) S/D

Extreme scaling in MOSFET

Surface or interface control

Diffusion species:

metal atom (Ni, Co)

- Rough interface at silicide/Si
 - Excess silicide formation
 - Different ϕ_{Bn} presented at interface
 - Process temperature dependent composition

Diffusion species: Si atom (Ti)

- Surface roughness increases
 - Line dependent

resistivity change

O. Nakatsuka et al., Microelectron. Eng., 83, 2272 (2006).

H. Iwai et al., Microelectron. Eng., 60, 157 (2002).

Specification for metal silicide S/D

- Atomically flat interface with smooth surface
- Suppressed leakage current
- Stability of silicide phase and interface

in a wide process temperature

Deposition of Ni-Si mixed films from NiSi₂ source

- No consumption of Si atoms from substrate

- No structural size effect in silicidation process
- Stable in a wide process temperature range

- <i>n</i> -type ∎	Si substrate, Si(100) with 400 nm SiO ₂ i Doping concentration : 3x10 ¹⁵ cm ⁻³	solation
SPM	and HF cleaning	Ni source
Diode	e patterning by photolithography and BHF etching of SiO ₂	Si substrate Al contact
• <u>Depo</u> s	sition of 10-nm-thick NiSi ₂ and Ni source by RF sputtering in Ar atmosphere	es SiO ₂
● Ni sili	cidation by Rapid Thermal Annealing (RTA) in N ₂ atmosphere	NiSi ₂ source Si substrate
● AI cor	ntact deposition on substrate backside by thermal evaporation	Al contact
• - Mea - SEN - XRI	asurement of electrical characteristics M and TEM observation D and XPS analysis	Schottky diode structures

SEM views of silicide/Si interfaces

- Ni-rich phases in the silicide layer are maintained with NiSi2 source

- No distinct structure change at the interface

- \rightarrow Stable ϕ_{Bn} and *n*-factor
- \rightarrow No structural effect for silicidation

Wire channel

Suppression of subthreshold leakage by surrounding gate structure

Planar

Surrounding gate

Nanowire structures in a wide meaning

Nanowire FET

Increase the Number of quantum channels

Device fabrication

Si/Si_{0.8}Ge_{0.2} superlattice epitaxy on SOI

Anisotropic etching of these layers Isotropic etching of SiGe

Gate depositions

S/D implantation Spacer formation Activation anneal Salicidation

3D-stacked Si NWs with Hi-k/MG

Wire direction : <110> 50 NWs in parallel 3 levels vertically-stacked Total array of 150 wires EOT ~2.6 nm

> C. Dupre *et al.*, IEDM Tech. Dig., p.749, 2008

SiNW FET Fabrication

S/D & Fin Patterning

Sacrificial Oxidation

Oixde etch back

SiN sidewall support formation

Gate Oxidation & Poly-Si Deposition
Gate Lithography & RIE Etching
Gate Sidewall Formation
Ni SALISIDE Process (Ni 9nm / TiN 10nm)
Backend Standard recipe for gate stack formation

(a) SEM image of Si NW FET (Lg = 200nm)(b) high magnification observation of gate and its sidewall.

Wire cross-section: 20 nm X 10 nm

Bench Mark

I_{ON}/I_{OFF} Bench mark

Primitive estimation !

Our roadmap for R &D

Source: H. Iwai, IWJT 2008

Current Issues <u>Si Nanowire</u>

Control of wire surface property Source Drain contact Optimization of wire diameter Compact I-V model **III-V & Ge Nanowire** High-k gate insulator Wire formation technique CNT: Growth and integration of CNT Width and Chirality control Chirality determines conduction types: metal or semiconductor

Graphene:

Graphene formation technique Suppression of off-current

Very small bandgap or no bandgap (semi-metal)

Control of ribbon edge structure which affects bandgap 72
Thank you for your attention!